# Design of Constraint Systems Based on Minimax Properties of Eigenvalues

There is a neat correspondence between the mathematical concept of a constraint and the practice of exact-constraint or kinematic machine design. This leads to some really useful insight for people designing machines with dynamics in mind. The PDF below is the extended abstract for a paper that Justin presented in Austin last week at the ASPE annual meeting.

# Setting Mechanical Contact Stiffness and Thermal Contact Conductivity Values in Ansys Workbench using Command Snippets

For a bonded contact, which is the default for models opened in Ansys Workbench Mechanical, the contacts are modeled using elements TARGE170 and CONTA174. The thermal conductivity and stiffness of the contact elements are calculated by Ansys based on the properties of the two bodies. The controls only allow one to change the contact stiffness factor FKN which is a multiplier but not the actual stiffness of the joint (ie with SI units of N/m/m^2). However if one would like to set the value of the contact stiffness or thermal contact resistance, it can be done using Command snippets (also known as the Commands Object) for each contact. Continue reading Setting Mechanical Contact Stiffness and Thermal Contact Conductivity Values in Ansys Workbench using Command Snippets

# Thermal Expansion: CTE Definitions and Thermal Strain

This entry discusses different definitions of CTE, their relation to thermal strain, how to convert between the different forms, and how to use them in a model. The forms discussed below include instantaneous coefficient of thermal expansion (CTE), secant coefficient of thermal expansion, and direct use of a thermal strain function.

# Expansion and Stiffness of Thin Adhesive or Rubber Layers

Thin layers of adhesive, plastic, or rubber are often employed in precision machines for joining, shimming, and sealing. These layers are often the most compliant and most dimensionally unstable elements of an assembly, so it is important to understand their behavior.

# Strain, Speed, and Microslip

Microslip in rolling motion is often very complicated, but the net effect can sometimes be estimated pretty easily based on strain and the resulting changes in velocity.

# Units of Power Spectral Density

The power spectral density (PSD) is one of the primary ways we characterize random or broadband signals. In many cases, a PSD is read from a signal analyzer and used qualitatively to describe the frequency content of a signal. But to do anything quantitative with a PSD, we need to understand its units.
Continue reading Units of Power Spectral Density

# How Crowned Pulleys Make Belts Track

Most people interested in machines know that adding a slight crown to a pulley tends to keep flat belts centered. But it is not obvious how it works.

# How to Get Part Edges to Show in Paraview or ParaFOAM

Paraview is a very powerful tool for post-processing and displaying data, especially from FE or CFD simulations. But because it typically acts on the mesh without the underlying geometry, it doesn’t inherently know about the edges of parts or volumes. In this post, I run through the steps to detect the edges and draw them as a wireframe.

# Strain and its Transformation

We can’t get very far in the understaning of machines and structures without thinking about their deformation. For solids, we usually describe the deformation in terms of strain. For a fluid, we usually speak of strain rate.