Ceramics are an important material for precision engineers. Ceramics are often used for their low coefficients of thermal expansion, high Young’s modulus, as well as other properties. The text *Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection *by Dietrich Munz and Theo Fett (google books link, amazon.com link) is a very good reference for ceramics and for their failure in particular. The text derives formulas for lifetime (time to failure) under constant and cyclic loads. The text also provides extensive information on materials testing, statistical methods (Weibull distributions), and probability of fracture for ceramics.

One topic that is particularly interesting and well written is the section on subcritical crack growth. Subcritical crack growth (also called stress corrosion) is the growth or extension of a crack over time with stress intensity factor* less than* the critical stress intensity factor . This is interesting because in classic linear elastic fracture mechanics (LEFM) cracks in brittle materials are typically viewed as stable (no growth under constant load) if the the stress intensity factor is less than the the critical value . The text only briefly mentions the underlying cause of subcritical crack growth in terms of chemical bonds breaking in the neighborhood of the crack tip.

Continue reading Good reference for fracture mechanics of ceramics